贝叶斯优化(BO)是一种广泛使用的顺序方法,用于对复杂和昂贵计算的黑盒功能进行零阶优化。现有的BO方法假设功能评估(反馈)可立即或固定延迟后可用。在许多现实生活中的问题(例如在线建议,临床试验和超参数调谐)中,此类假设可能不实用,在随机延迟后可以提供反馈。为了从这些问题中的实验并行化中受益,学习者需要开始新的功能评估,而无需等待延迟反馈。在本文中,我们认为BO在随机延迟反馈问题下。我们提出了带有子线性后悔的算法,可以确保有效解决选择新功能查询的困境,同时等待随机延迟的反馈。在我们的结果的基础上,我们还为批处理和上下文高斯工艺匪徒做出了新的贡献。合成和现实生活数据集的实验验证了我们的算法的性能。
translated by 谷歌翻译
贝叶斯优化(BO)已成为黑框函数的顺序优化。当BO用于优化目标函数时,我们通常可以访问对潜在相关功能的先前评估。这就提出了一个问题,即我们是否可以通过元学习(meta-bo)来利用这些先前的经验来加速当前的BO任务,同时确保稳健性抵抗可能破坏BO融合的潜在有害的不同任务。本文介绍了两种可扩展且可证明的稳健元算法:稳健的元高斯过程 - 加工置信度结合(RM-GP-UCB)和RM-GP-thompson采样(RM-GP-TS)。我们证明,即使某些或所有以前的任务与当前的任务不同,这两种算法在渐近上都是无重组的,并且证明RM-GP-UCB比RM-GP-TS具有更好的理论鲁棒性。我们还利用理论保证,通过通过在线学习最大程度地减少遗憾,优化分配给各个任务的权重,从而减少了相似任务的影响,从而进一步增强了稳健性。经验评估表明,(a)RM-GP-UCB在各种应用程序中都有效,一致地性能,(b)RM-GP-TS,尽管在理论上和实践中都比RM-GP-ucb稳健,但在实践中,在竞争性中表现出色某些方案具有较小的任务,并且在计算上更有效。
translated by 谷歌翻译
The growing literature of Federated Learning (FL) has recently inspired Federated Reinforcement Learning (FRL) to encourage multiple agents to federatively build a better decision-making policy without sharing raw trajectories. Despite its promising applications, existing works on FRL fail to I) provide theoretical analysis on its convergence, and II) account for random system failures and adversarial attacks. Towards this end, we propose the first FRL framework the convergence of which is guaranteed and tolerant to less than half of the participating agents being random system failures or adversarial attackers. We prove that the sample efficiency of the proposed framework is guaranteed to improve with the number of agents and is able to account for such potential failures or attacks. All theoretical results are empirically verified on various RL benchmark tasks.
translated by 谷歌翻译
最近,神经体系结构搜索(NAS)已应用于在现实世界应用中自动化神经网络的设计。已经开发了大量算法,以提高NAS中最终选定架构的搜索成本或性能。不幸的是,这些NAS算法旨在仅从其搜索空间中选择一个表现良好的架构,因此忽略了神经网络合奏的能力(即具有多样化体系结构的神经网络的集合)在实现单个最终选定中的性能方面提高了性能建筑学。为此,我们介绍了一种新型的神经合奏搜索算法,通过贝叶斯采样(NESB)称为神经合奏搜索,以有效有效地从NAS搜索空间中选择良好的表现性神经网络集合。在我们的广泛实验中,NESBS算法被证明能够比最先进的NAS算法提高性能,同时产生可比的搜索成本,从而表明我们的NESBS算法在实践中的NESB算法优越。
translated by 谷歌翻译
When using LiDAR semantic segmentation models for safety-critical applications such as autonomous driving, it is essential to understand and improve their robustness with respect to a large range of LiDAR corruptions. In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions. To rigorously evaluate the robustness and generalizability of current approaches, we propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy. Then, we systematically investigate 11 LiDAR semantic segmentation models, especially spanning different input representations (e.g., point clouds, voxels, projected images, and etc.), network architectures and training schemes. Through this study, we obtain two insights: 1) We find out that the input representation plays a crucial role in robustness. Specifically, under specific corruptions, different representations perform variously. 2) Although state-of-the-art methods on LiDAR semantic segmentation achieve promising results on clean data, they are less robust when dealing with noisy data. Finally, based on the above observations, we design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications. It is promising that our benchmark, comprehensive analysis, and observations can boost future research in robust LiDAR semantic segmentation for safety-critical applications.
translated by 谷歌翻译
In recent years, arbitrary image style transfer has attracted more and more attention. Given a pair of content and style images, a stylized one is hoped that retains the content from the former while catching style patterns from the latter. However, it is difficult to simultaneously keep well the trade-off between the content details and the style features. To stylize the image with sufficient style patterns, the content details may be damaged and sometimes the objects of images can not be distinguished clearly. For this reason, we present a new transformer-based method named STT for image style transfer and an edge loss which can enhance the content details apparently to avoid generating blurred results for excessive rendering on style features. Qualitative and quantitative experiments demonstrate that STT achieves comparable performance to state-of-the-art image style transfer methods while alleviating the content leak problem.
translated by 谷歌翻译
With the increasing ability of large language models (LLMs), in-context learning (ICL) has become a new paradigm for natural language processing (NLP), where LLMs make predictions only based on contexts augmented with a few training examples. It has been a new trend exploring ICL to evaluate and extrapolate the ability of LLMs. In this paper, we aim to survey and summarize the progress, challenges, and future work in ICL. We first present a formal definition of ICL and clarify its correlation to related studies. Then, we organize and discuss advanced techniques of ICL, including training strategies, prompting strategies, and so on. Finally, we present the challenges of ICL and provide potential directions for further research. We hope our work can encourage more research on uncovering how ICL works and improving ICL in future work.
translated by 谷歌翻译
Gaze estimation is the fundamental basis for many visual tasks. Yet, the high cost of acquiring gaze datasets with 3D annotations hinders the optimization and application of gaze estimation models. In this work, we propose a novel Head-Eye redirection parametric model based on Neural Radiance Field, which allows dense gaze data generation with view consistency and accurate gaze direction. Moreover, our head-eye redirection parametric model can decouple the face and eyes for separate neural rendering, so it can achieve the purpose of separately controlling the attributes of the face, identity, illumination, and eye gaze direction. Thus diverse 3D-aware gaze datasets could be obtained by manipulating the latent code belonging to different face attributions in an unsupervised manner. Extensive experiments on several benchmarks demonstrate the effectiveness of our method in domain generalization and domain adaptation for gaze estimation tasks.
translated by 谷歌翻译
Generalizability to unseen forgery types is crucial for face forgery detectors. Recent works have made significant progress in terms of generalization by synthetic forgery data augmentation. In this work, we explore another path for improving the generalization. Our goal is to reduce the features that are easy to learn in the training phase, so as to reduce the risk of overfitting on specific forgery types. Specifically, in our method, a teacher network takes as input the face images and generates an attention map of the deep features by a diverse multihead attention ViT. The attention map is used to guide a student network to focus on the low-attended features by reducing the highly-attended deep features. A deep feature mixup strategy is also proposed to synthesize forgeries in the feature domain. Experiments demonstrate that, without data augmentation, our method is able to achieve promising performances on unseen forgeries and highly compressed data.
translated by 谷歌翻译
The development of deep learning models in medical image analysis is majorly limited by the lack of large-sized and well-annotated datasets. Unsupervised learning does not require labels and is more suitable for solving medical image analysis problems. However, most of the current unsupervised learning methods need to be applied to large datasets. To make unsupervised learning applicable to small datasets, we proposed Swin MAE, which is a masked autoencoder with Swin Transformer as its backbone. Even on a dataset of only a few thousand medical images and without using any pre-trained models, Swin MAE is still able to learn useful semantic features purely from images. It can equal or even slightly outperform the supervised model obtained by Swin Transformer trained on ImageNet in terms of the transfer learning results of downstream tasks. The code will be publicly available soon.
translated by 谷歌翻译